
GVPR(1) GVPR(1)

NAME
gvpr − graph pattern scanning and processing language
(previously known as gpr)

SYNOPSIS
gvpr [-icV?] [-o outfile] [-a args] [’prog’ | -f progfile] [files]

DESCRIPTION
gvpr is a graph stream editor inspired by awk. It copies input graphs to its output, possibly transforming
their structure and attributes, creating new graphs, or printing arbitrary information. The graph model is
that provided by libagraph(3). In particular, gvpr reads and writes graphs using the dot language.

Basically, gvpr traverses each input graph, denoted by $G, visiting each node and edge, matching it with
the predicate-action rules supplied in the input program. The rules are evaluated in order. For each predi-
cate evaluating to true, the corresponding action is performed. During the traversal, the current node or
edge being visited is denoted by $.

For each input graph, there is a target subgraph, denoted by $T, initially empty and used to accumulate cho-
sen entities, and an output graph, $O, used for final processing and then written to output. By default, the
output graph is the target graph. The output graph can be set in the program or, in a limited sense, on the
command line.

OPTIONS
The following options are supported:

−a args The string args is split into whitespace-separated tokens, with the individual tokens available as
strings in the gvpr program as ARGV[0],...,ARGV[ARGC-1]. Whitespace characters within sin-
gle or double quoted substrings, or preceded by a backslash, are ignored as separators. In general,
a backslash character turns off any special meaning of the following character. Note that the
tokens derived from multiple -a flags are concatenated.

−c Use the source graph as the output graph.

−i Derive the node-induced subgraph extension of the output graph in the context of its root graph.

−o outfile
Causes the output stream to be written to the specified file; by default, output is written to stdout.

−f progfile
Use the contents of the specified file as the program to execute on the input. If progfile contains a
slash character, the name is taken as the pathname of the file. Otherwise, gvpr will use the directo-
ries specified in the environment variable GPRPATH to look for the file. If −f is not given, gvpr
will use the first non-option argument as the program.

−V Causes the program to print version information and exit.

−? Causes the program to print usage information and exit.

OPERANDS
The following operand is supported:

files Names of files containing 1 or more graphs in the dot language. If no -f option is given, the first
name is removed from the list and used as the input program. If the list of files is empty, stdin
will be used.

PROGRAMS
A gvpr program consists of a list of predicate-action clauses, having one of the forms:

BEGIN { action }

BEG_G { action }

N [predicate] { action }

E [predicate] { action }

1 November 2005 1

GVPR(1) GVPR(1)

END_G { action }

END { action }

A program can contain at most one of each of the BEGIN, BEG_G, END_G and END clauses. There can
be any number of N and E statements, the first applied to nodes, the second to edges. The top-level seman-
tics of a gvpr program are:

Evaluate the BEGIN clause, if any.
For each input graph G {

Set G as the current graph and current object.
Evaluate the BEG_G clause, if any.
For each node and edge in G {

Set the node or edge as the current object.
Evaluate the N or E clauses, as appropriate.

}
Set G as the current object.
Evaluate the END_G clause, if any.

}
Evaluate the END clause, if any.

The actions of the BEGIN, BEG_G, END_G and END clauses are performed when the clauses are evalu-
ated. For N or E clauses, either the predicate or action may be omitted. If there is no predicate with an
action, the action is performed on every node or edge, as appropriate. If there is no action and the predicate
evaluates to true, the associated node or edge is added to the target graph.

Predicates and actions are sequences of statements in the C dialect supported by the libexpr(3) library. The
only difference between predicates and actions is that the former must have a type that may interpreted as
either true or false. Here the usual C convention is followed, in which a non-zero value is considered true.
This would include non-empty strings and non-empty references to nodes, edges, etc. However, if a string
can be converted to an integer, this value is used.

In addition to the usual C base types (void, int, char, float, long, unsigned and double), gvpr provides string
as a synonym for char*, and the graph-based types node_t, edge_t, graph_t and obj_t. The obj_t type can
be viewed as a supertype of the other 3 concrete types; the correct base type is maintained dynamically.
Besides these base types, the only other supported type expressions are (associative) arrays.

Constants follow C syntax, but strings may be quoted with either "..." or ’...’. In certain contexts, string val-
ues are interpreted as patterns for the purpose of regular expression matching. Patterns use ksh(1) file
match pattern syntax. gvpr accepts C++ comments as well as cpp-type comments. For the latter, if a line
begins with a ’#’ character, the rest of the line is ignored.

A statement can be a declaration of a function, a variable or an array, or an executable statement. For decla-
rations, there is a single scope. Array declarations have the form:

type array [var]

where the var is optional. As in C, variables and arrays must be declared. In particular, an undeclared vari-
able will be interpreted as the name of an attribute of a node, edge or graph, depending on the context.

Executable statements can be one of the following:
{ [statement ...] }
expression // commonly var = expression
if(expression) statement [else statement]
for(expression ; expression ; expression) statement
for(array [var]) statement
while(expression) statement
switch(expression) case statements
break [expression]
continue [expression]
return [expression]

1 November 2005 2

GVPR(1) GVPR(1)

Items in brackets are optional.

In the second form of the for statement, the variable var is set to each value used as an index in the speci-
fied array and then the associated statement is evaluated. Function definitions can only appear in the
BEGIN clause.

Expressions include the usual C expressions. String comparisons using == and != treat the right hand
operand as a pattern. gvpr will attempt to use an expression as a string or numeric value as appropriate.

Expressions of graphical type (i.e., graph_t, node_t, edge_t, obj_t) may be followed by a field reference in
the form of .name. The resulting value is the value of the attribute named name of the given object. In addi-
tion, in certain contexts an undeclared, unmodified identifier is taken to be an attribute name. Specifically,
such identifiers denote attributes of the current node or edge, respectively, in N and E clauses, and the cur-
rent graph in BEG_G and END_G clauses.

As usual in the libagraph(3) model, attributes are string-valued. In addition, gvpr supports certain pseudo-
attributes of graph objects, not necessarily string-valued. These reflect intrinsic properties of the graph
objects and cannot be set by the user.

head : node_t
the head of an edge.

tail : node_t
the tail of an edge.

name : string
the name of an edge, node or graph. The name of an edge has the form "<tail-name><edge-
op><head-name>[<key>]", where <edge-op> is "->" or "--" depending on whether the graph is
directed or not. The bracket part [<key>] only appears if the edge has a non-trivial key.

indegree : int
the indegree of a node.

outdegree : int
the outdegree of a node.

degree : int
the degree of a node.

root : graph_t
the root graph of an object. The root of a root graph is itself.

parent : graph_t
the parent graph of a subgraph. The parent of a root graph is NULL

n_edges : int
the number of edges in the graph

n_nodes : int
the number of nodes in the graph

directed : int
true (non-zero) if the graph is directed

strict : int
true (non-zero) if the graph is strict

BUILT-IN FUNCTIONS
The following functions are built into gvpr. Those functions returning references to graph objects return
NULL in case of failure.

Graphs and subgraph
graph(s : string, t : string) : graph_t

creates a graph whose name is s and whose type is specified by the string t. Ignoring case, the
characters U, D, S, N have the interpretation undirected, directed, strict, and non-strict,

1 November 2005 3

GVPR(1) GVPR(1)

respectively. If t is empty, a directed, non-strict graph is generated.

subg(g : graph_t, s : string) : graph_t
creates a subgraph in graph g with name s. If the subgraph already exists, it is returned.

isSubg(g : graph_t, s : string) : graph_t
returns the subgraph in graph g with name s, if it exists, or NULL otherwise.

fstsubg(g : graph_t) : graph_t
returns the first subgraph in graph g, or NULL if none exists.

nxtsubg(sg : graph_t) : graph_t
returns the next subgraph after sg, or NULL.

isDirect(g : graph_t) : int
returns true if and only if g is directed.

isStrict(g : graph_t) : int
returns true if and only if g is strict.

nNodes(g : graph_t) : int
returns the number of nodes in g.

nEdges(g : graph_t) : int
returns the number of edges in g.

Nodes
node(sg : graph_t, s : string) : node_t

creates a node in graph g of name s. If such a node already exists, it is returned.

subnode(sg : graph_t, n : node_t) : node_t
inserts the node n into the subgraph g. Returns the node.

fstnode(g : graph_t) : node_t
returns the first node in graph g, or NULL if none exists.

nxtnode(n : node_t) : node_t
returns the next node after n, or NULL.

isNode(sg : graph_t, s : string) : node_t
looks for a node in graph g of name s. If such a node exists, it is returned. Otherwise, NULL is
returned.

Edges
edge(t : node_t, h : node_t, s : string) : edge_t

creates an edge with tail node t, head node h and name s. If the graph is undirected, the distinction
between head and tail nodes is unimportant. If such an edge already exists, it is returned.

subedge(g : graph_t, e : edge_t) : edge_t
inserts the edge e into the subgraph g. Returns the edge.

isEdge(t : node_t, h : node_t, s : string) : edge_t
looks for an edge with tail node t, head node h and name s. If the graph is undirected, the distinc-
tion between head and tail nodes is unimportant. If such an edge exists, it is returned. Otherwise,
NULL is returned.

fstout(n : node_t) : edge_t
returns the first out edge of node n.

nxtout(e : edge_t) : edge_t
returns the next out edge after e.

fstin(n : node_t) : edge_t
returns the first in edge of node n.

1 November 2005 4

GVPR(1) GVPR(1)

nxtin(e : edge_t) : edge_t
returns the next in edge after e.

fstedge(n : node_t) : edge_t
returns the first edge of node n.

nxtedge(e : edge_t, node_t) : edge_t
returns the next edge after e.

Graph I/O
write(g : graph_t) : void

prints g in dot format onto the output stream.

writeG(g : graph_t, fname : string) : void
prints g in dot format into the file fname.

fwriteG(g : graph_t, fd : int) : void
prints g in dot format onto the open stream denoted by the integer fd.

readG(fname : string) : graph_t
returns a graph read from the file fname. The graph should be in dot format. If no graph can be
read, NULL is returned.

freadG(fd : int) : graph_t
returns the next graph read from the open stream fd. Returns NULL at end of file.

Graph miscellany
delete(g : graph_t, x : obj_t) : void

deletes object x from graph g. If g is NULL, the function uses the root graph of x. If x is a graph
or subgraph, it is closed unless x is locked.

isIn(g : graph_t, x : obj_t) : int
returns true if x is in subgraph g. If x is a graph, this indicates that g is the immediate parent graph
of x.

clone(g : graph_t, x : obj_t) : obj_t
creates a clone of object x in graph g. In particular, the new object has the same name/value
attributes and structure as the original object. If an object with the same key as x already exists, its
attributes are overlaid by those of x and the object is returned. If an edge is cloned, both endpoints
are implicitly cloned. If a graph is cloned, all nodes, edges and subgraphs are implicitly cloned. If
x is a graph, g may be NULL, in which case the cloned object will be a new root graph.

copy(g : graph_t, x : obj_t) : obj_t
creates a copy of object x in graph g, where the new object has the same name/value attributes as
the original object. If an object with the same key as x already exists, its attributes are overlaid by
those of x and the object is returned. Note that this is a shallow copy. If x is a graph, none of its
nodes, edges or subgraphs are copied into the new graph. If x is an edge, the endpoints are created
if necessary, but they are not cloned. If x is a graph, g may be NULL, in which case the cloned
object will be a new root graph.

copyA(src : obj_t, tgt : obj_t) : int
copies the attributes of object src to object tgt, overwriting any attribute values tgt may initially
have.

induce(g : graph_t) : void
extends g to its node-induced subgraph extension in its root graph.

aget(src : obj_t, name : string) : string
returns the value of attribute name in object src. This is useful for those cases when name conflicts
with one of the keywords such as "head" or "root".

1 November 2005 5

GVPR(1) GVPR(1)

aset(src : obj_t, name : string, value : string) : int
sets the value of attribute name in object src to value. Returns 0 on success, non-zero on failure.
See aget above.

compOf(g : graph_t, n : node_t) : graph_t
returns the connected component of the graph g containing node n, as a subgraph of g. The sub-
graph only contains the nodes. One can use induce to add the edges. The function fails and returns
NULL if n is not in g. Connectivity is based on the underlying undirected graph of g.

lock(g : graph_t, v : int) : int
implements graph locking on root graphs. If the integer v is positive, the graph is set so that future
calls to delete have no immediate effect. If v is zero, the graph is unlocked. If there has been a call
to delete the graph while it was locked, the graph is closed. If v is negative, nothing is done. In all
cases, the previous lock value is returned.

Strings
sprintf(fmt : string, ...) : string

returns the string resulting from formatting the values of the expressions occurring after fmt
according to the printf (3) format fmt

gsub(str : string, pat : string) : string

gsub(str : string, pat : string, repl : string) : string
returns str with all substrings matching pat deleted or replaced by repl, respectively.

sub(str : string, pat : string) : string

sub(str : string, pat : string, repl : string) : string
returns str with the leftmost substring matching pat deleted or replaced by repl, respectively. The
characters ’ˆ’ and ’$’ may be used at the beginning and end, respectively, of pat to anchor the pat-
tern to the beginning or end of str.

substr(str : string, idx : int) : string

substr(str : string, idx : int, len : int) : string
returns the substring of str starting at position idx to the end of the string or of length len, respec-
tively. Indexing starts at 0. If idx is negative or idx is greater than the length of str, a fatal error
occurs. Similarly, in the second case, if len is negative or idx + len is greater than the length of str,
a fatal error occurs.

length(s : string) : int
returns the length of the string s.

index(s : string, t : string) : int
returns the index of the character in string s where the leftmost copy of string t can be found, or -1
if t is not a substring of s.

match(s : string, p : string) : int
returns the index of the character in string s where the leftmost match of pattern p can be found, or
-1 if no substring of s matches p.

canon(s : string) : string
returns a version of s appropriate to be used as an identifier in a dot file.

xOf(s : string) : string
returns the string "x" if s has the form "x,y", where both x and y are numeric.

yOf(s : string) : string
returns the string "y" if s has the form "x,y", where both x and y are numeric.

llOf(s : string) : string
returns the string "llx,lly" if s has the form "llx,lly,urx,ury", where all of llx, lly, urx, and ury are
numeric.

1 November 2005 6

GVPR(1) GVPR(1)

urOf(s)
urOf(s : string) : string returns the string "urx,ury" if s has the form "llx,lly,urx,ury", where all of
llx, lly, urx, and ury are numeric.

sscanf(s : string, fmt : string, ...) : int
scans the string s, extracting values according to the sscanf (3) format fmt. The values are stored
in the addresses following fmt, addresses having the form &v, where v is some declared variable of
the correct type. Returns the number of items successfully scanned.

I/O
print(...) : void

print(expr, ...) prints a string representation of each argument in turn onto stdout, followed by a
newline.

printf(fmt : string, ...) : int

printf(fd : int, fmt : string, ...) : int
prints the string resulting from formatting the values of the expressions following fmt according to
the printf (3) format fmt. Returns 0 on success. By default, it prints on stdout. If the optional
integer fd is given, output is written on the open stream associated with fd.

scanf(fmt : string, ...) : int

scanf(fd : int, fmt : string, ...) : int
scans in values from an input stream according to the scanf (3) format fmt. The values are stored
in the addresses following fmt, addresses having the form &v, where v is some declared variable of
the correct type. By default, it reads from stdin. If the optional integer fd is given, input is read
from the open stream associated with fd. Returns the number of items successfully scanned.

openF(s : string, t : string) : int
opens the file s as an I/O stream. The string argument t specifies how the file is opened. The argu-
ments are the same as for the C function fopen(3). It returns an integer denoting the stream, or -1
on error.

As usual, streams 0, 1 and 2 are already open as stdin, stdout, and stderr, respectively. Since
gvpr may use stdin to read the input graphs, the user should avoid using this stream.

closeF(fd : int) : int
closes the open stream denoted by the integer fd. Streams 0, 1 and 2 cannot be closed. Returns 0
on success.

readL(fd : int) : string
returns the next line read from the input stream fd. It returns the empty string "" on end of file.
Note that the newline character is left in the returned string.

Math
exp(d : double) : double

returns e to the dth power.

log(d : double) : double
returns the natural log of d.

sqrt(d : double) : double
returns the square root of the double d.

pow(d : double, x : double) : double
returns d raised to the xth power.

cos(d : double) : double
returns the cosine of d.

1 November 2005 7

GVPR(1) GVPR(1)

sin(d : double) : double
returns the sine of d.

atan2(y : double, x : double) : double
returns the arctangent of y/x in the range -pi to pi.

Miscellaneous
exit() : void

exit(v : int) : void
causes gvpr to exit with the exit code v. v defaults to 0 if omitted.

rand() : double
returns a pseudo-random double between 0 and 1.

srand() : int

srand(v : int) : int
sets a seed for the random number generator. The optional argument gives the seed; if it is omitted,
the current time is used. The previous seed value is returned. srand should be called before any
calls to rand.

BUILT-IN VARIABLES
gvpr provides certain special, built-in variables, whose values are set automatically by gvpr depending on
the context. Except as noted, the user cannot modify their values.

$: obj_t
denotes the current object (node, edge, graph) depending on the context. It is not available in
BEGIN or END clauses.

$F : string
is the name of the current input file.

$G : graph_t
denotes the current graph being processed. It is not available in BEGIN or END clauses.

$O : graph_t
denotes the output graph. Before graph traversal, it is initialized to the target graph. After traversal
and any END_G actions, if it refers to a non-empty graph, that graph is printed onto the output
stream. It is only valid in N, E and END_G clauses. The output graph may be set by the user.

$T : graph_t
denotes the current target graph. It is a subgraph of $G and is available only in N, E and END_G
clauses.

$tgtname : string
denotes the name of the target graph. By default, it is set to "gvpr_result". If used multiple times
during the execution of gvpr, the name will be appended with an integer. This variable may be set
by the user.

$tvroot : node_t
indicates the starting node for a (directed or undirected) depth-first traversal of the graph (cf.
$tvtype below). The default value is NULL for each input graph.

$tvtype : tvtype_t
indicates how gvpr traverses a graph. At present, it can only take one of six values: TV_flat,
TV_dfs, TV_fwd, TV_ref, TV_bfs, TV_ne, and TV_en. TV_flat is the default. The meaning of
these values is discussed below.

ARGC : int
denotes the number of arguments specified by the -a args command-line argument.

ARGV : string array
denotes the array of arguments specified by the -a args command-line argument. The ith argument
is given by ARGV[i].

1 November 2005 8

GVPR(1) GVPR(1)

BUILT-IN CONSTANTS
There are several symbolic constants defined by gvpr.

NULL : obj_t
a null object reference, equivalent to 0.

TV_flat : tvtype_t
a simple, flat traversal, with graph objects visited in seemingly arbitrary order.

TV_ne : tvtype_t
a traversal which first visits all of the nodes, then all of the edges.

TV_en : tvtype_t
a traversal which first visits all of the edges, then all of the nodes.

TV_dfs : tvtype_t
a traversal of the graph using a depth-first search on the underlying undirected graph. To do the
traversal, gvpr will check the value of $tvroot. If this has the same value that it had previously (at
the start, the previous value is initialized to NULL.), gvpr will simply look for some unvisited
node and traverse its connected component. On the other hand, if $tvroot has changed, its con-
nected component will be toured, assuming it has not been previously visited or, if $tvroot is
NULL, the traversal will stop. Note that using TV_dfs and $tvroot, it is possible to create an infi-
nite loop.

TV_fwd : tvtype_t
a traversal of the graph using a depth-first search on the graph following only forward arcs. In

TV_bfs : tvtype_t
a traversal of the graph using a bread-first search on the graph ignoring edge directions. See the
item on TV_dfs above for the role of $tvroot. libagraph(3), edges in undirected graphs are given
an arbitrary direction, which is used for this traversal. The choice of roots for the traversal is the
same as described for TV_dfs above.

TV_rev : tvtype_t
a traversal of the graph using a depth-first search on the graph following only reverse arcs. In liba-
graph(3), edges in undirected graphs are given an arbitrary direction, which is used for this traver-
sal. The choice of roots for the traversal is the same as described for TV_dfs above.

EXAMPLES
gvpr -i ’N[color=="blue"]’ file.dot

Generate the node-induced subgraph of all nodes with color blue.

gvpr -c ’N[color=="blue"]{color = "red"}’ file.dot

Make all blue nodes red.

BEGIN { int n, e; int tot_n = 0; int tot_e = 0; }
BEG_G {
n = nNodes($G);
e = nEdges($G);
printf ("%d nodes %d edges %s0, n, e, $G.name);
tot_n += n;
tot_e += e;

}
END { printf ("%d nodes %d edges total0, tot_n, tot_e) }

Version of the program gc.

gvpr -c ""

Equivalent to nop.

BEG_G { graph_t g = graph ("merge", "S"); }
E {

1 November 2005 9

GVPR(1) GVPR(1)

node_t h = clone(g,$.head);
node_t t = clone(g,$.tail);
edge_t e = edge(t,h,"");
e.weight = e.weight + 1;

}
END_G { $O = g; }

Produces a strict version of the input graph, where the weight attribute of an edge indicates how many
edges from the input graph the edge represents.

BEGIN {node_t n; int deg[]}
E{deg[head]++; deg[tail]++; }
END_G {
for (deg[n]) {
printf ("deg[%s] = %d0, n.name, deg[n]);

}
}

Computes the degrees of nodes with edges.

ENVIRONMENT
GPRPATH

Colon-separated list of directories to be searched to find the file specified by the -f option.

BUGS
When the program is given as a command line argument, the usual shell interpretation takes place, which
may affect some of the special names in gvpr. To avoid this, it is best to wrap the program in single quotes.

The constants TV_flat, TV_dfs, TV_fwd, and TV_rev

There is a single global scope, except for formal function parameters, and even these can interfere with the
type system. Also, the extent of all variables is the entire life of the program. It might be preferable for
scope to reflect the natural nesting of the clauses, or for the program to at least reset locally declared vari-
ables. For now, it is advisable to use distinct names for all variables.

If a function ends with a complex statement, such as an IF statement, with each branch doing a return, type
checking may fail. Functions should use a return at the end.

The expr library does not support string values of (char*)0. This means we can’t distinguish between ""
and (char*)0 edge keys. For the purposes of looking up and creating edges, we translate "" to be (char*)0,
since this latter value is necessary in order to look up any edge with a matching head and tail.

The language inherits the usual C problems such as dangling references and the confusion between ’=’ and
’==’.

AUTHOR
Emden R. Gansner <erg@research.att.com>

SEE ALSO
awk(1), gc(1), dot(1), nop(1), libexpr(3), libagraph(3)

1 November 2005 10

